Flocking Model for Self-Organized Swarms

Kevin Marlon Soza Mamani1, Fabio Richard Díaz Palacios1

Abstract

The algorithms of self-organized swarm control refer first to two basic behaviors, these are aggregation and flocking. The present work focuses its research on coordinated movement behavior that is defined as the ability of a group of individuals (usually composed of hundreds or thousands) to move and maneuver in a coordinated manner as if they were a single structure. Such behavior refers us to studies carried out in the field of trajectory control and aggregation behavior, both being keys for the development of a coordinated movement control algorithm. Therefore, control of the system starts from the combination of these studies. The control is a leading robot model which can be designated for any unit according to the assigned task. On the other hand, all robots except the leader keep the group attached and keeping a safe distance. The simulations of the system were developed for three units and later for twelve, observing the cohesion and uniformity of the swarm in movement.

Authors' Affiliation:

How to cite:

IEEE:

APA:

Harvard:

Vancouver:

Preview this publication:

References

  1. E. Aranda, T. Salgado and M. Velasco, “Control no Lineal Discontinuo de un Robot.” CIC – IPN, pp. 42-49, Mar. 2002.
  2. H. Celikkanat, E. Sahin, “Steering self-organized robot flocks through externally guided individuals”, in Neural Comput & Applic, Ankara, Turkey, 2010.
  3. C. De La Cruz, R. Carelli, C. Couto Gava, Control centralizado de formación usando una cámara omnidireccional. Instituto de Automática (INAUT) Universidad Nacional de San Juan Argentina. Departamento de Ingeniería Eléctrica. Universidad Federal do Espírito Santo Vitória-ES, Brasil.
  4. E. Ferrante, “Information Transfer in a Flocking Robot Swarm,” Ph. D. thesis, Department of Mechanical Engineering, Université Libre de Bruxelles. Bruxelles, Belgium, 2013.
  5. E. Ferrante, E. Turgut, C. Huepe, A. Stranieri, A, “Self-organized flocking with a mobile robot swarm: a novel motion control method”, IRIDIA, Bruxelles, Tech. Rep. TR/IRIDIA/2012-003, 2012.
  6. V. Gazi, K. Passino, “Stability Analysis of Swarm,” in Proceedings of the America Control Conference, Ohio, USA, 2002, pp. 1813-1818.
  7. M. Henson, D. Seborg, Nonlinear control process, 1rd edition, Springer, 1996.
  8. A. Hernández, C. Copot, H. Murcia, R. De Keyser y J. Cerquera, “Formation control of UGVs using an UAV as remote sensor vision” in Proceedings of The 19th World Congress, Cape Town, South Africa, 2014, pp. 11872-11877.
  9. A. Isidori, Nonlinear control systems, 3rd edition, Springer-Verlag, 1995.
  10. Kelly R., Calleri R., Ibarra Zannatha J., Monroy C., “Control de una pandilla de robots móviles para el seguimiento de una constelación de puntos objetivo”, in VI Congreso Mexicano de Robótica, Torreón, México, 2004, pp. 83-89.
  11. B. Khaldi, F. Cherif, “A Virtual Viscoelastic Based Aggregation Model”, TAROS 2016, pp. 202-213, 2016.
  12. O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” TIJRR, vol.5, pp. 90-98, 1986.
  13. G. Oriolo, A. De Luca, “WMR control via dynamic feedback linearization: design, implementation and experimental validation”, IEEE Transactions on Control Systems Technology, Vol. 10, pp. 835-852, November 2002.
  14. M. Padilla, J. Savage, A. Hernandez and F. Arambula, “Local Autonomous Robot Navigation Using Potential Fields, Motion Planning” Xing-Jian Jing (Ed.), ISBN: 978-953-7619-01-5, Jun. 2008.
  15. F. Roberti, J. M. Toibero, R. F. Vassallo, R. Carelli, “Control estable de formación basado en visión omnidireccional para robots móviles no holonómicos”, RIAI, Vol. 8, pp. 29-37, Enero 2011.
  16. R. Silva, M. Molina, V. Hernández, G. Silva, M. Marciano y E. Portilla, “Modelado y control de un robo móvil tipo Newt en la tarea de seguimiento de trayectoria”, TÉLÉMATIQUE, Vol. 7, pp. 129-145, Enero 2008.
  17. T. Sempere, “Agentes y Enjambres Artificiales,” Ph. D. thesis, Dpto. de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, San Vicente del Raspeig, España. 2013.
  18. A. E. Turgut, H. Celikkanat, F. Gökce and E. Sahin, “Self-Organized Flocking with a Mobile Robot Swarm,” Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp. 39-46.
  19. A. E. Turgut, “Self-organized Flocking with a Movil Robot Swarm,” Ph. D. thesis, Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey, 2008
Translate (traducir) »